451 research outputs found

    Developments in data for economic research

    Get PDF
    0info:eu-repo/semantics/publishe

    Team Objective Structured Bedside Assessment (TOSBA) as formative assessment in undergraduate Obstetrics and Gynaecology: a cohort study.

    Get PDF
    BACKGROUND: Team Objective Structured Bedside Assessment (TOSBA) is a learning approach in which a team of medical students undertake a set of structured clinical tasks with real patients in order to reach a diagnosis and formulate a management plan and receive immediate feedback on their performance from a facilitator. TOSBA was introduced as formative assessment to an 8-week undergraduate teaching programme in Obstetrics and Gynaecology (O\u26G) in 2013/14. Each student completed 5 TOSBA sessions during the rotation. The aim of the study was to evaluate TOSBA as a teaching method to provide formative assessment for medical students during their clinical rotation. The research questions were: Does TOSBA improve clinical, communication and/or reasoning skills? Does TOSBA provide quality feedback? METHODS: A prospective cohort study was conducted over a full academic year (2013/14). The study used 2 methods to evaluate TOSBA as a teaching method to provide formative assessment: (1) an online survey of TOSBA at the end of the rotation and (2) a comparison of the student performance in TOSBA with their performance in the final summative examination. RESULTS: During the 2013/14 academic year, 157 students completed the O\u26G programme and the final summative examination . Each student completed the required 5 TOSBA tasks. The response rate to the student survey was 68 % (n = 107/157). Students reported that TOSBA was a beneficial learning experience with a positive impact on clinical, communication and reasoning skills. Students rated the quality of feedback provided by TOSBA as high. Students identified the observation of the performance and feedback of other students within their TOSBA team as key features. High achieving students performed well in both TOSBA and summative assessments. The majority of students who performed poorly in TOSBA subsequently passed the summative assessments (n = 20/21, 95 %). Conversely, the majority of students who failed the summative assessments had satisfactory scores in TOSBA (n = 6/7, 86 %). CONCLUSIONS: TOSBA has a positive impact on the clinical, communication and reasoning skills of medical students through the provision of high-quality feedback. The use of structured pre-defined tasks, the observation of the performance and feedback of other students and the use of real patients are key elements of TOSBA. Avoiding student complacency and providing accurate feedback from TOSBA are on-going challenges

    Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field

    Get PDF
    2011 March 1In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad/s. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 degree Centigrade above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors (approximately 1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002–0.01 solid volume fraction) and nanoparticle radii (1–10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful selection of the rotating or sinusoidal field parameters (field frequency and amplitude). The work indicates that it may be feasible to combine low-field MRI with a magnetic hyperthermia system using superparamagnetic iron oxide nanoparticles.National Institutes of Health (U.S.

    Loss of flexion during bronchoscopy: a physical experiment and case study of commercially available systems

    Get PDF
    During routine endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) procedures, especially with biopsy of lymph nodes in or around the left upper lobe, frequent reports have noted the loss of ultrasound image and needle angulation leading to an inability to biopsy nodes visualised by EBUS. The aim of this research was to investigate and compare this loss of angulation with commercially available scopes. Bench-top experiments and a clinical case study demonstrated the varying loss of scope angulation, flexibility and manoeuvrability with different scopes and biopsy instruments leading to procedural implications. Improvements in both the EBUS scope and needle characteristics are required to overcome this limitation which has implications in bronchoscope navigation and the diagnostic yield of EBUS-TBNA

    Design, synthesis and biological evaluation of a new series of carvedilol derivatives that protect sensory hair cells from aminoglycoside-induced damage by blocking the mechanoelectrical transducer channel

    Get PDF
    Aminoglycosides (AGs) are broad-spectrum antibiotics used for the treatment of serious bacterial infections but have use-limiting side effects including irreversible hearing loss. Here, we assessed the otoprotective profile of carvedilol in mouse cochlear cultures and in vivo zebrafish assays and investigated its mechanism of protection which, we found, may be mediated by a block of the hair cell’s mechanoelectrical transducer (MET) channel, the major entry route for the AGs. To understand the full otoprotective potential of carvedilol, a series of 18 analogues were prepared and evaluated for their effect against AG-induced damage as well as their affinity for the MET channel. One derivative was found to confer greater protection than carvedilol itself in cochlear cultures and also to bind more tightly to the MET channel. At higher concentrations, both carvedilol and this derivative were toxic in cochlear cultures but not in zebrafish, suggesting a good therapeutic window under in vivo conditions

    Optimizing parameters of an open-source airway segmentation algorithm using different CT images.

    Get PDF
    Background: Computed tomography (CT) helps physicians locate and diagnose pathological conditions. In some conditions, having an airway segmentation method which facilitates reconstruction of the airway from chest CT images can help hugely in the assessment of lung diseases. Many efforts have been made to develop airway segmentation algorithms, but methods are usually not optimized to be reliable across different CT scan parameters. Methods: In this paper, we present a simple and reliable semi-automatic algorithm which can segment tracheal and bronchial anatomy using the open-source 3D Slicer platform. The method is based on a region growing approach where trachea, right and left bronchi are cropped and segmented independently using three different thresholds. The algorithm and its parameters have been optimized to be efficient across different CT scan acquisition parameters. The performance of the proposed method has been evaluated on EXACT’09 cases and local clinical cases as well as on a breathing pig lung phantom using multiple scans and changing parameters. In particular, to investigate multiple scan parameters reconstruction kernel, radiation dose and slice thickness have been considered. Volume, branch count, branch length and leakage presence have been evaluated. A new method for leakage evaluation has been developed and correlation between segmentation metrics and CT acquisition parameters has been considered. Results: All the considered cases have been segmented successfully with good results in terms of leakage presence. Results on clinical data are comparable to other teams’ methods, as obtained by evaluation against the EXACT09 challenge, whereas results obtained from the phantom prove the reliability of the method across multiple CT platforms and acquisition parameters. As expected, slice thickness is the parameter affecting the results the most, whereas reconstruction kernel and radiation dose seem not to particularly affect airway segmentation. Conclusion: The system represents the first open-source airway segmentation platform. The quantitative evaluation approach presented represents the first repeatable system evaluation tool for like-for-like comparison between different airway segmentation platforms. Results suggest that the algorithm can be considered stable across multiple CT platforms and acquisition parameters and can be considered as a starting point for the development of a complete airway segmentation algorithm

    Convergence and translation: attitudes to inter-professional learning and teaching of creative problem-solving among medical and engineering students and staff

    Get PDF
    Background: Healthcare worldwide needs translation of basic ideas from engineering into the clinic. Consequently, there is increasing demand for graduates equipped with the knowledge and skills to apply interdisciplinary medicine/engineering approaches to the development of novel solutions for healthcare. The literature provides little guidance regarding barriers to, and facilitators of, effective interdisciplinary learning for engineering and medical students in a team-based project context. Methods: A quantitative survey was distributed to engineering and medical students and staff in two universities, one in Ireland and one in Belgium, to chart knowledge and practice in interdisciplinary learning and teaching, and of the teaching of innovation. Results: We report important differences for staff and students between the disciplines regarding attitudes towards, and perceptions of, the relevance of interdisciplinary learning opportunities, and the role of creativity and innovation. There was agreement across groups concerning preferred learning, instructional styles, and module content. Medical students showed greater resistance to the use of structured creativity tools and interdisciplinary teams. Conclusions: The results of this international survey will help to define the optimal learning conditions under which undergraduate engineering and medicine students can learn to consider the diverse factors which determine the success or failure of a healthcare engineering solution

    Pre-clinical validation of virtual bronchoscopy using 3D Slicer

    Get PDF
    Lung cancer still represents the leading cause of cancer-related death, and the long-term survival rate remains low. Computed tomography (CT) is currently the most common imaging modality for lung diseases recognition. The purpose of this work was to develop a simple and easily accessible virtual bronchoscopy system to be coupled with a customized electromagnetic (EM) tracking system for navigation in the lung and which requires as little user interaction as possible, while maintaining high usability. The proposed method has been implemented as an extension to the open-source platform, 3D Slicer. It creates a virtual reconstruction of the airways starting from CT images for virtual navigation. It provides tools for pre-procedural planning and virtual navigation, and it has been optimized for use in combination with a of freedom EM tracking sensor. Performance of the algorithm has been evaluated in ex vivo and in vivo testing. During ex vivo testing, nine volunteer physicians tested the implemented algorithm to navigate three separate targets placed inside a breathing pig lung model. In general, the system proved easy to use and accurate in replicating the clinical setting and seemed to help choose the correct path without any previous experience or image analysis. Two separate animal studies confirmed technical feasibility and usability of the system. This work describes an easily accessible virtual bronchoscopy system for navigation in the lung. The system provides the user with a complete set of tools that facilitate navigation towards user-selected regions of interest. Results from ex vivo and in vivo studies showed that the system opens the way for potential future work with virtual navigation for safe and reliable airway disease diagnosis
    • …
    corecore